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A wavelet-based formula similar to the logarithmic decrement formula is introduced to
estimate damping in multi-degree-of-freedom systems from time-domain responses. Both
analytical and numerical approaches are investigated.
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1. INTRODUCTION

The problem of damping identi"cation very often arises when analyzing dissipative
dynamic systems. Generally speaking, damping is associated with a dissipation of vibration
energy explained by internal (friction, microstructural e!ects, etc.) or external (#uid/
structure or soil/structure interactions, etc.) mechanisms as recalled in reference [1]. Among
the diversity of models characterizing structural damping (modal damping, Rayleigh
damping [2], equivalent viscous damping, etc.), the study is focusing on the identi"cation of
damping ratio aimed at describing viscous damping. From a practical point of view, the
main stake is to obtain relevant damping estimates of multi-degree-of-freedom (m.d.o.f.)
systems proceeding to several damping measurements [2, 3] that are very sensitive to noise
or excitation defaults.

In the frame of applications, the study of continuous systems modelled by partial
di!erential equations (PDE) with boundary and initial conditions for both displacements
and stresses is performed using a discretization of the PDE, via a Rayleigh}Ritz procedure
for instance. So, systems with N d.o.f. may be obtained, governed by the equation

MXG#CX0 #KX"f (t), (1)

where M, C, K, respectively, denote mass, damping and sti!ness matrices, f (t) stands for the
external forcing: let us assume that it does not depend on the displacement vector X and the
velocity vector X0 . The term CX0 corresponds to a mathematical expression of viscous
damping proportional to velocity. Basile's hypothesis [4] is very often veri"ed: real modal
decoupling is realized either because C is given by a sum of the matrices M, K and powers or
because the special Basley's condition [5, 6] is veri"ed. In the modal basis, one is lead to
study the dynamic response of N uncoupled s.d.o.f. oscillations governed by the equation
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whose general solution is given by
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pulsation and the phase of the jth mode, H
y
(t) denoting the Heaviside function.

Theoretically, the free solution of equation (1) in the physical basis is written as a linear
combination of modal responses (q

j
)
1)j)N given by
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where A
ij

stands for the jth coordinate of the ith eigenmode.
Here, we assume that the experimental process consists in moving the system away from

its equilibrium position and letting it move in free vibrations or exciting the system with
a forced vibration monitoring. This "rst procedure is often required to identify viscous
damping using time-domain techniques such as the logarithmic decrement [7, 8]. In
practice, the response is not recorded in the modal basis but in the physical basis and is
perturbed by noise measurement: eigenfrequencies associated with these responses are
assumed to be easily separated from the main studied eigenfrequency. In such a case,
common identi"cation methods cannot be used because the &&pure'' signal cannot be
distinguished from perturbations. If modal decoupling is not possible, signal components
recordings of the type (4) are considered in the following study; though modal decoupling
remains a major drawback when identifying viscous damping, the case of an s.d.o.f.
oscillator governed by the equation

xK#2cxR #u2
0
x"f (t) (5)

is nevertheless interesting to understand and test the e$ciency of an identi"cation
procedure; analysis of either free vibrations, or Green kernel or response to an external
sinusoidal forcing of system (5) provides theoretical expressions for c via the theory of
ordinary di!erential equations, Fourier or Laplace transforms, or any other classical
theoretical tool.

During the last decade, numerous applications in mechanics have been extensively using
wavelets. Coca and Billings [9] performed a continuous-time system identi"cation using
wavelet patterns. Staszewski [10] developed a wavelet-based feature selection procedure to
defect faults in vibratory problems; Staszewski and Worden analyzed chaotic behavior
using wavelets in reference [11]; Lamarque and Malasoma [12] introduced an extension of
Lyapunov exponents based on continuous wavelet transform. According to damping
identi"cation, Ruzzene et al. [13] and Staszewski [1] performed a continuous wavelet
analysis of the free response of dynamic systems to extract modal features: they separated
modal contributions owing to the rapidly decreasing properties of the progressive Morlet
wavelet. In reference [1], Staszewski also introduced a wavelet reconstruction formula to
approximate the impulse response of m.d.o.f. systems. The main purpose of this paper
is to analyze a damped signal recorded in the physical basis with wavelet patterns
optimally localized both in time and frequency domains and to extract &&local'' information
to estimate the damping ratio. As a result, a wavelet logarithmic decrement formula is
introduced.

The paper is organized as follows: in Section 2, a non-exhaustive list of standard
identi"cation techniques is recalled. In Section 3, we investigate the determination of
viscous damping by using a continuous wavelet transform. In Section 4, the latter method is
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adapted in the frame of a multiresolution analysis more suitable to analyze sampled signals
than continuous analysis. In Section 5, we perform an improved determination of damping
via a superabundant analysis. Then we draw some conclusions according to the wavelet
logarithmic decrement formula. Part II will be dedicated to the validation of the new
wavelet procedure on real time-series responses borrowed from in situ experiments carried
out on a civil engineering building.

2. QUICK OVERVIEW OF IDENTIFICATION TECHNIQUES

The simplest procedure that is commonly used to identify viscous damping is the
logarithmic decrement formula (6) depicted by

c"
1

¹

ln K
x (t)

x (t#¹) K , (6)

where

x (t)"Xe~ct cos(ut#u)#perturbation (7)

denotes the free response of system (5) and ¹ the pseudo-period of this response. It is
successful when dealing with s.d.o.f. systems in association with noise pre-"ltering, but soon
becomes inaccurate when the system has m.d.o.f. Because of noise measurement or because
response (7) consists of several modal features, system (5) is interesting to test the reliability
of damping identi"cation procedures. For numerical purposes, the perturbation is now
standing for a reduced centered Gaussian noise of standard deviation B3[0%, 50%], and
c denotes the damping ratio. Standard damping measurements and criteria may be found in
references [2, 3]. Alternative methods such as multi-input}multi-output Volterra series [14]
are available to analyze non-linear systems from the corresponding higher order frequency
response functions (HFRFs). Since the scope of the present study only deals with
time-domain procedures, we do not give exhaustive explanations on frequency-domain
methods. In reference [13], Ruzzene et al. developed a continuous wavelet procedure based
on a progressive Morlet wavelet analysis to extract modal parameters of m.d.o.f. systems:
processing discrete approximates of the continuous wavelet transform (CWT) of
a multi-modal response, they provide damping estimates from the instantaneous amplitude
and phase of the signal using an approach similar to the Hilbert transform (HT). Band-pass
frequency components are "ltered by selecting the CWT dilation scale that matches the
corresponding frequency mode, in the peculiar case of the Morlet analysis. In reference [1],
Staszewski introduces a discrete wavelet reconstruction formula permitting one to recover
the impulse response of m.d.o.f. systems, selecting narrow frequency bands of a damped
signal near the natural frequency to be extracted. A logarithmic regression technique similar
to the logarithmic decrement is then used to extract a damping ratio estimate from the
impulse response envelope. Here we describe a new wavelet logarithmic decrement formula
developed in the frame of both a general continuous wavelet analysis and a general
multiresolution analysis [15]. This method simultaneously provides the modal decoupling
and a damping ratio estimate.

3. CONTINUOUS WAVELET TRANSFORM*DAMPING ESTIMATE

In this section, a new wavelet-based logarithmic decrement formula is introduced to
provide the damping of a speci"c mode in a multi-modal signal response depicted hereafter
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by
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Considering the CWT of a signal f de"ned by
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bound to an analyzing function g3¸2 (R) checking some oscillation properties [16, pp.
909}910]
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one obtains integrating by part the wavelet transform of f :
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Choosing a wavelet g3¸2(R) whose support is completely included in R` and so that the
integral :

R
e~cau cos(uau#u)g (u) du does not vanish (this condition being essentially

reduced to consider a wavelet g whose "rst momentum is non-trivial), a damping estimation
of c may be exhibited as for the logarithmic-decrement formula when focusing on the
successive peaks b

n
"n¹ and b

m
"m¹ of signal f. Injecting the ¹-pseudo-periodicity of f in
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formula (14), it yields
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where¹"2n/u is the signal fundamental pseudo-period and Mg
n
":`=

~=
xng(x) dx is the nth

momentum of g. From expression (15), a damping estimate of signal (9) is "nally given by
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as soon as the analyzing scale a accurately separates the natural frequencies, checking the
forth-coming admissibility conditions

au"O(1) and inf
1)i:N

(e
i
a)A1. (17)

Several notices may be pointed out:

f Formula (16) clearly looks like the logarithmic-decrement formula (6). Admissibility
conditions au"O(1) and e

i
aA1, ∀i3[1, N!1] are closely related to the intrinsic

properties of the time-scale analysis of a signal, to the optical analogy (focus on b with
magni"cation 1/a) and to the frequential separation power. It is su$cient to adapt the
analyzing scale so that higher frequency modes are "ltered (e

i
a<1) and so that the

fundamental mode remains captured (au"O(1)). Assuming that the analyzing wavelet
g is well localized both in time and frequency domains, a relationship between the dilation
parameter a and the corresponding frequency f which is focused by the wavelet transform
may be obtained by a"f

g
/f, f

g
denoting the frequency that matches the maximum value

of the Fourier transform of g.
f Physical arguments claim that the wavelet-based formula produces relevant damping
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is the pseudo-period of the ith frequency mode.
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3.1. CONCLUSION OF THE CONTINUOUS ANALYSIS

Having carefully chosen a scale of analysis a so that ua"O(1) and inf
1)i:N

(e
i
a)A1 we

have for (n, m)3N2,
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The wavelet-logarithmic formula just built permits one to identify the modal damping of
a perturbed signal (9). Formula (19) is valid whether the perturbation is either a modal
super-position with a discrete spectrum, or a purely stochastic perturbation or still
a combination of two perturbations of these two types.

A Fourier expansion would permit us to classify perturbations into two classes:

f Perturbation with small amplitudes and a spectrum close to the eigenfrequency u of the
oscillator (9).

f Perturbation with mean amplitude, and a spectrum possessing only high frequencies
according to u.

In the "rst case, corrective terms provided by the perturbation with small amplitudes are
small (order O(1/inf

i
(e
i
a))). In the second case, perturbations of large amplitudes do not

modify the estimate of damping for easily "ltered by the wavelet analysis. The
time-frequency localization diagram of a wavelet t [17, pp. 27}28] presented in Figure 1
justi"es this claim. Indeed, the admissibility condition (13) for t insures a good localization
both in time (support(t)K[t

min
, t

max
]) and in frequency (support(tK )K[u

min
, u

max
]) of the

expanded and translated pattern t (u
0
(t!t

0
)). Then any event (t

0
, u

0
) of the signal is
Figure 1. A wavelet time-frequency localization diagram.
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localized by the wavelet analysis inside a trapezoidal hatched domain as depicted in
Figure 1. Finally, a convenient choice of the scale analysis a can "lter high signal
frequencies, only keeping local informations of the time-frequency plane.

From a practical point of view, a wavelet "ltering is required to successively cancel lower
frequency modes and extract the viscous damping c

i
of the ith harmonic response of signal

(9). The frame of multiresolution analysis [18] of ¸2(R) and ¸2(R/Z) (1-periodic signals) also
provides a suitable way to build Hilbertian basis allowing to select speci"c frequency
components of a signal. Therefore, a discrete counterpart of formula (19) is developed in this
context.

4. MULTIRESOLUTION ANALYSIS AND DAMPING ESTIMATION

Wavelet theory is divided into two distinct parts so the Fourier analysis is: a continuous
theory as depicted in Section 3 and a discrete formulation which develops concepts of
wavelet series, Hilbertian bases of functional spaces [19, 20], and multiresolution analysis
(MRA) [18]. At the same time, building adapted wavelets has become a great challenge
[16, 21}23], the most famous ones probably being the compactly supported Daubechies
wavelets and the Spline wavelets. The following study emphasizes a new version of the
wavelet logarithmic decrement based on a periodic Spline MRA [17]. Though functional
background and notations are recalled hereafter, the reader is invited to read references
[15, 17, 18] for further details. In particular, MRA of ¸2(R) are separated from MRA of
¸2(R/Z) the space of function periodized on [0, 1].

4.1. MULTIRESOLUTION ANALYSIS OF ¸2(R)

Multiresolution analysis of a signal f consists in building successive approximations
( f

j
)
0)j)J

of f including details ( f
di
)
0)i(j

up to a resolution 2~j, the scale j"0 and J being,
respectively, the coarser and the "ner scales. The reader may read the explanations in
references [15, p. 915, 17, p. 38]. From a mathematical point of view, the "ner
approximation f

J
of f may be indi!erently expressed by its scaling series or its wavelet series

representation
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where S ), )T denotes the standard inner product of ¸2 (R), (u
jk
)0)j:J
k|Z

and (t
jk
)0)j:J
k|Z

being
two orthonormal bases involving dilated and translated patterns of a single pair (u, t),
respectively, the scaling function and the mother wavelet of the MRA:

∀k3Z K
u
jk

(x)"2j@2u (2jx!k),

t
jk

(x)"2j@2t (2jx!k).
(22)

The analogy with the continuous wavelet transform is noticeable, (a, b) being replaced by
the pair (2~j, k.2~j). In practice, the construction of the other wavelet t is derived from the
one of the scaling function u which in turn is derived from the determination of admissible
"ltering functions [15, 16].
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4.2. MULTIRESOLUTION ANALYSIS OF ¸2(R/Z)

A multiresolution analysis of 1-periodic signals of ¸2 (R/Z) leans on a periodization of an
MRA of ¸2 (R), by folding the approximation and details spaces on themselves with
a Poisson summation [24]. By the end, an MRA of ¸2 (R/Z) may be associated with a pair of
analyzing functions (uJ , tI ) deduced from (u, t) via the relationship

uJ
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u
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where sJ
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"S f, uJ

jk
T and dI

jk
"S f, tI

jk
T are, respectively, referred to as the scaling and the

wavelet coe$cients of signal f.
Practically speaking, the time-scale analysis of a periodic signal may be easily performed

using fast trees algorithms [17, 18] allowing one to select or cancel details of peculiar
channels of details of a signal f"( f

k
)
0)k:2J sampled in the interval [0, 1].s

The decomposition mechanism detailed in the periodical case [16, pp. 934}938, 24, 25,
pp. 55}59] and depicted in Figure 2 consists in successively convoluting the signal f,
previously interpolated with a "lter I̧

J
, with a low-pass "lter HI

j
and a band-pass "lter GI

j
and then downsampling the obtained coe$cients by a factor of two*convolution and
downsampling being performed in the Fourier space*By the end, scaling coe$cients sJ

jk
and wavelet coe$cients dI

jk
are recursively computed from the coe$cients sJ

j`1,k
at scale

j#1 with a complexity of order O(N) [17]. Having stored the detail coe$cients dI
jk

, the
process is reversible and the signal may be recomposed with no loss of information, owing
to similar convolution and upsampling operations. It should be pointed out that the
existence of an interpolated "lter I̧

J
is proved only in the peculiar case of periodic Spline

wavelets [19].

4.3. A DISCRETE WAVELET-LOGARITHMIC DECREMENT FORMULA

A discrete wavelet-logarithmic decrement formula is straightforwardly derived from the
continuous formula (19) in the case of an MRA of ¸2(R/Z), using the scaling function uJ as
the underlying analyzing function g. In this context, the dilation parameter a"2ja is set to
both capture the fundamental frequency mode fu and to "lter the higher frequency modes
( fui

)
1)i:N

and eventually additional noisy perturbations in the pyramidal decomposition
of signal f. Local extrema of scaling coe$cients sJ

jk
bound to translation factors b

k
"k/2ja

and b
l
"l/2ja , 0)k, l(2ja are the counterparts of the terms=g

f
(k¹, a) and=g

f
(l¹, a) in

the continuous formula (16). The fast tree algorithms exposed in section 4.2 have been
implemented in C## language using a periodic Spline wavelet analysis [25, p. 61].
-Whether one is concerned with a signal f sampled on a window [0, ¹], the scaling and wavelet coe$cients
exposed in the algorithm are the ones of function g de"ned as g: x3[0, ¹]Pf (x¹).



Figure 2. Pyramidal decomposition tree in periodic wavelets.

Figure 3. A signal decomposition (c"0)4, u"10n rad s~1, B"0)5): scaling coe$cients pyramid sJ
jk

.
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Assuming that the sampled signal f of the damping ratio c is living inside a given time
window [0, ¹], we also study the renormalized signal g of damping ratio c/¹ de"ned as
g : x"t/¹Pf (x¹) on [0, 1]. By extension, the discrete formula involving an analyzing
scale j

a
is written as

cK
2ja

k!l
ln K

sJ
jal

sJ
jak
K (26)

In practice, only the scaling function uJ is considered as a potential applicant to analyze
signal f for its "rst moment is non-trivial. Formula (26) may be viewed as a classical
logarithmic decrement applied to the "ltered component f

ja
of signal f.

Handling the validation of formula (26), a signal f of amplitude X"1)0, of damping
c"0)4, of fundamental frequency u"10n rad s~1 and disrupted with a Gaussian noise of
standard deviation B"0)5, has been decomposed. Figure 3 displays a distribution of the
scaling coe$cients in terms of the focal parameters (k/2ja)

k|*0,2ja+
and the analyzing scale j

a
.

It is noticeable that the more the scale j
a
becomes rough, the more noise is "ltered, as it was



TABLE 1

Comparison of performance between a few identi,cation procedures

Logarithmic decrement Wavelet decrement Wavelet decrement
(Wavelet pre-"ltering) (Standard analysis) (Superabundant analysis)

c (%) b (%)
Dc

c
(%) c

Dc

c
(%) c

Dc

c
(%) c

0)1 0)0 151)20 0)00251 151)20 0)00251 0)00 0)00100
0)1 160)34 0)00260 160)95 0)00261 3)55 0)00103
0)2 154)14 0)00254 154)42 0)00254 3)75 0)00104
0)5 191)12 0)00291 189)69 0)00290 22)33 0)00122

1 0 0)00 0)01000 0)00 0)01000 0)00 0)01000
1 6)00 0)01000 6)60 0)01000 2)45 0)00998
2 11)32 0)01027 10)80 0)01020 4)04 0)01003
5 72)94 0)01729 74)93 0)01749 19)46 0)01177

10 0 0)00 0)10000 0)00 0)10000 0)02 0)10002
1 0)72 0)10018 0)72 0)10023 0)36 0)10002
2 1)21 0)10023 1)07 0)10021 0)59 0)10001
5 2)76 0)10020 2)65 0)10015 1)28 0)09968

10 6)43 0)10357 5)78 0)10411 2)73 0)09984
20 25)19 0)12418 22)82 0)12075 6)22 0)10147
50 139)52 0)23952 135)19 0)23519 26)33 0)12492

100 0 0)15 1)00151 0)15 1)00151 0)02 0)99981
1 0)76 1)00695 0)62 1)00528 0)12 0)99978
2 1)90 1)01869 1)93 1)01903 0)23 1)00014
5 8)31 1)08311 8)70 1)08700 0)69 0)99809

10 22)93 1)22932 21)72 1)21721 1)43 1)00132
20 35)06 1)34444 34)48 1)33180 2)70 1)00548
50 19)45 1)08466 17)19 1)05384 10)60 1)09308
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expected. One may yet distinguish a loss of de"nition in curves associated with coarse
analyzing scales, with too few signi"cant coe$cients. Consequently, estimating the damping
c with formula (26) does not provide results with better accuracy than with the logarithmic
decrement associated with a pre-"ltering as pointed out in Table 1. Improving the
coe$cient extrema localization, we introduce the concept of superabundant analysis
developed by Perrier [25].

5. SUPERABUNDANT ANALYSIS AND DAMPING ESTIMATION

The standard decomposition drawback is to represent a signal with a small number of
analyzing scales j3[0, J!1] and the number of coe$cients getting more and more smaller
as j becomes coarser (2j coe$cients per scale j). The reliability of formula (26) strongly
depends on an e$cient detection of successive coe$cient extrema, it is common to use an
&&oblique'' analysis which associates 22J~1 &&intermediate'' scaling coe$cients to 2J sampling
points: 2J coe$cients for each 2J~1 scales. Heuristically, the superabundant analysis brings
a compromise between the continuous analysis (see Section 3) and a standard orthonormal
MRA (see Section 4.1).
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5.1. INTERMEDIATE SCALING FUNCTIONS

Let us consider an MRA of ¸2(R/Z) generated by a particular periodization of an MRA
of ¸2(R) bound to u. Freezing the "nest analyzing scale J, we de"ne an intermediate scaling
function by

Uak(x)"Ja +
r|Z

uAaAx#r!
k

2JBB , k3[0, 2J!1], a"
2J~1

m
, 1)m)2J~1. (27)

For speci"c intermediate scales a"2j and equating E (k/2J~j)"E (k/2J~j)#k/2J~j!

E(k/2J~j), where E (x) stands for the integer part of x, it yields

U
2jk

(x)"uJ
jE(k@2J~j) Ax!

k

2J
#2~jEA

k

2J~jBB . (28)

with E(k/2J~j) ranging over the whole interval [0, 2J!1], it follows that (Uak )k|*0,2J~1+
also

constitutes an oblique family of patterns spanning the approximation space up to
a resolution 2~j. Identically as in Section 4.1, we introduce intermediate scaling coe$cients
of a signal belonging to ¸2(R/Z) by

Oak ( f )"P
1

0

f (x)Uak (x) dx. (29)

These coe$cients in superabundant quantity improve the signal de"nition, allowing to
better localize the signal extrema which results in more relevant damping estimates than
with the wavelet logarithmic decrement formula. Also, fast tree algorithms exist in the
context of the superabundant multiresolution analysis and permit an e!ective computation
of coe$cients Oak( f ) in an O(N) procedure thoroughly detailed in reference [25, p. 64].

5.2. A SUPERABUNDANT WAVELET LOGARITHMIC DECREMENT FORMULA

Extending the discrete wavelet formula (26) to the superabundant con"guration, one
obtains

cK
2J

k!l
ln K

O
2jal

( f )

O
2jak

( f ) K , (30)

where J is the "nest scale equal to the interpolation scale and ja is an admissible analysis
scale according to the criteria (17).

Alternatively, the damping bound the ith modal response may be extracted using the
following formula:

c
i
K

2J

k!l
ln K

O
2jal

( f!fu!+j/i~1
j/1

fuj
)

O
2jak

( f!fu!+ j/i~1
j/1

fuj
) K ∀i3[1, N!1] (31)

with indices k and l corresponding to some extrema of the ith mode.

5.3. NUMERICAL EXPERIMENTS

Superabundant pyramidal algorithms bound to a periodical spline analysis have been
implemented to validate formula (30). As a descriptive example, we analyzed a signal
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f (X"1)0, c"0)4, u"10 n rad s~1, B"0)5) and displayed its superabundant
decomposition pyramid in Figure 4. It is noticeable that the more the decomposition
channel log

2
(a) decreases, the more the perturbation noise is "ltered. Numerical validation

of formula (30) requires to identify the position of location of intermediate coe$cients
extrema. Validity conditions (17) must be respected, i.e., "tting the decomposition channel
a"2ja to the channel of noise appearance, taking advantage of the "ltering abilities of
wavelets. Experimentally speaking, the di$culty is to "t the frontier between noise and
&&pure'' signal components as witnessed in Figure 4.

Automatic recognition of local extrema being proceeded, a campaign of simulations has
been developed in order to test the reliability and noise resistance of formula (30). Mean
relative error distributions have been drawn for signals of type (7), of amplitude X"1)0
perturbed with a random Gaussian noise characterized by a null mean and a standard
deviation B3[0, 50] (%) and for a given damping ratio c ranging between 0)1 and 100%.
For each parameter set, a median relative error was estimated using a data base including
100 random processes. The relative error map displayed in Figure 5 reveals a good behavior
of the superabundant wavelet decrement formula: the mean relative error is indeed very
often below the threshold of 10% according to c3[10%, 100%], with a linear growth in
terms of the noise level. Wavelet-based formula's performance highlights an excellent noise
resistance of the so-called identi"cation procedure, sensitively improving estimates for
c ranging in large damping area (c3[20%, 100%]) as well as medium damping area
(c3[5%, 20%]). As physical systems are often characterized by dampings of weak and even
very weak amplitude, a similar study was conducted in the range of c3[0)1%, 5%]. Few
damping estimates are gathered in Table 1 and attest that the wavelet analysis is not only
a wavelet "ltering of the damped signal. As for the estimation of very small dampings
(cK0)1%), Table 1 shows that formula (30) greatly improves the forecasts compared to the
Figure 4. Superabundant decomposition of signal f with c"0)4, u"10n rad s~1, B"0)5: intermediate scaling
coe$cients pyramid O

2jk
.



Figure 5. Wavelet-based logarithmic decrement (30): Relative error distribution Dc/c (%) in terms of the
damping ratio c (%) and the noise level B (%).
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ones computed with its competitive methods whose estimations literally explode. Generally,
speaking, the experimenter may consider the wavelet logarithmic decrement as bringing
a sensitive improvement with forecasts' errors roughly less than 20% of the &&ultimate''
damping value, while at the same time its classical counterparts give unrealistic values easily
reaching the level of 150 or 190%. Yet, these results must be handled with care if we speak in
terms of signal-to-noise ratios that are utopian.

6. CONCLUSION

This study allowed us to build a new procedure to identify the damping ratio of dynamic
systems leaning on a wavelet analysis of the time-response. From a signal processing point
of view, this procedure may be assimilated as a logarithmic decrement transform applied to
a "ltered component of the original response. The corresponding formula which is based
upon rigorous mathematical developments has been validated "rst analytically in the
context of a general continuous wavelet transform and then numerically by comparison
with exact reference solutions in the frame of a superabundant multiresolution analysis.
Comparisons between exact and numerical estimates revealed an excellent noise resistance
when the signal-to-noise ratio is fairly bad and demonstrated the relevance of the
wavelet-based procedure which may be distinguished from standard counterparts by its
faculty to analyze a signal at di!erent resolution scales. Though physical arguments are
required to set the optimizing analyzing scale which permits to separate modal (respectively
purely random) contributions from the fundamental mode, the wavelet-logarithmic formula
is mathematically very robust and a few improvements are still investigated to cope with
ill-separated dynamic responses involving close frequency modes. Part II of this paper is
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now concerned with the practical application of the wavelet-based formula to estimate
damping ratios of a m.d.o.f. system like a civil engineering building from in situ dynamic
responses to shock or harmonic excitations.
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third edition.
9. D. COCA and S. A. BILLINGS 1997 International Journal of Bifurcations and Chaos 7, 87}96.

Continuous-time system identi"cation for linear and non-linear systems using wavelet
decomposition.

10. W. J. STASZEWSKI 1998 Journal of Sound and <ibration 211, 735}760. Wavelet based compression
and feature selection for vibration analysis.

11. W. J. STASZEWSKI and K. WORDEN 1996 Proceedings of the International Conference on
nonlinearity, bifurcation and chaos, ¸odz, Poland, ISBN 2-86834-110-1, 234}238. The analysis of
chaotic behaviour using fractal and wavelet theory.

12. C. H. LAMARQUE and J. M. MALASOMA 1996 Nonlinear Dynamics 9, 333}347. Analysis of
nonlinear oscillations by wavelet transform: Lyapunov exponents.

13. M. RUZZENE, A. FASANA, L. GARIBALDI and B. PIOMBO 1997 Mechanical Systems and Signal
Processing 11, 207}218. Natural frequencies and dampings identi"cation using wavelet transform:
application to real data.

14. Q. CHEN, G. MANSON and K. WORDEN 1995 Proceedings of the International Conference M<2:
New advances in modal synthesis of large structures, non-linear damped and non-deterministic cases,
¸yon, France, 549}561. Higher-order FRFs for multi-input nonlinear systems: a case study.

15. I. DAUBECHIES 1992 ¹en ¸ectures on =avelets. Library of Congress Cataloging-in-Publication
Data, Society for Industrial and Applied Mathematics.

16. I. DAUBECHIES 1988 Communications on Pure and Applied Mathematics XLI, 909}996.
Orthonormal bases of compactly supported wavelets.
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